Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.494
Filter
1.
Libyan J Med ; 19(1): 2348235, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38718270

ABSTRACT

Among hospitalized patients worldwide, infections caused by multidrug-resistant (MDR) bacteria are a major cause of morbidity and mortality. This study aimed to isolate MDR bacteria from five intensive care units (ICUs) at Tripoli University Hospital (TUH). A prospective cross-sectional study was conducted over a seven-month period (September 2022 to March 2023) across five ICUs at TUH. A total of 197 swabs were collected from Patients', healthcare workers' and ICUs equipment. Samples collected from patients were nasal swabs, oral cavity swabs, hand swabs, sputum specimens, skin swabs, umbilical venous catheter swabs, and around cannula. Swabs collected from health care workers were nasal swabs, whereas ICUs equipment's samples were from endotracheal tubes, oxygen masks, and neonatal incubators. Identification and antimicrobial susceptibility test was confirmed by using MicroScan auto SCAN 4 (Beckman Coulter). The most frequent strains were Gram negative bacilli 113 (57.4%) with the predominance of Acinetobacter baumannii 50/113 (44%) followed by Klebsiella pneumoniae 44/113 (40%) and Pseudomonas aeruginosa 6/113 (5.3%). The total Gram positive bacterial strains isolated were 84 (42.6%), coagulase negative Staphylococci 55 (66%) with MDRs (89%) were the most common isolates followed by Staphylococcus aureus 15 (17.8%). Different antibiotics were used against these isolates; Gram- negative isolates showed high resistance rates to ceftazidime, gentamicin, amikacin and ertapenem. A. baumannii were the most frequent MDROs (94%), and the highest resistance rates in Gram-positive strains were observed toward ampicillin, oxacillin, ampicillin/sulbactam and Cefoxitin, representing 90% of total MDR Gram-positive isolates. ESBL and MRS were identified in most of strains. The prevalence of antibiotic resistance was high for both Gram negative and Gram positive isolates. This prevalence requires strict infection prevention and control intervention, continuous monitoring, implementation of effective antibiotic stewardship, immediate, concerted and collaborative action to monitor its prevalence and spread in the hospital.


Subject(s)
Drug Resistance, Multiple, Bacterial , Hospitals, University , Intensive Care Units , Humans , Libya/epidemiology , Cross-Sectional Studies , Prevalence , Prospective Studies , Male , Female , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Adult , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/drug effects , Cross Infection/epidemiology , Cross Infection/microbiology , Gram-Positive Bacteria/isolation & purification , Gram-Positive Bacteria/drug effects , Middle Aged
2.
PLoS One ; 19(5): e0301388, 2024.
Article in English | MEDLINE | ID: mdl-38722868

ABSTRACT

Salmonella is a primary cause of foodborne diseases globally. Despite food contamination and clinical infections garnering substantial attention and research, asymptomatic Salmonella carriers, potential sources of infection, have been comparatively overlooked. In this study, we conducted a comparative analysis of serotype distribution, antimicrobial resistance phenotypes, and genetic profiles of archived Salmonella strains isolated from food (26), asymptomatic carriers (41), and clinical cases (47) in Shiyan City, China. Among the 114 Salmonella strains identified, representing 31 serotypes and 34 Sequence Types (STs), the most prevalent serovars included Typhimurium, Derby, Enteritidis, Thompson, and London, with the most predominant STs being ST11, ST40, ST26, ST34, and ST155. Antimicrobial resistance testing revealed that all strains were only sensitive to meropenem, with 74.6% showing antimicrobial resistance (AMR) and 53.5% demonstrating multidrug resistance (MDR). Strains resistant to five and six classes of antibiotics were the most common. Pearson's chi-square test showed no statistically significant difference in the occurrence of AMR (p = 0.105) or MDR (p = 0.326) among Salmonella isolates from the three sources. Our findings underscore associations and diversities among Salmonella strains isolated from food, asymptomatic carriers, and clinical patients, emphasizing the need for increased vigilance towards asymptomatic Salmonella carriers by authorities.


Subject(s)
Anti-Bacterial Agents , Salmonella , Serogroup , China/epidemiology , Salmonella/genetics , Salmonella/drug effects , Salmonella/isolation & purification , Salmonella/classification , Humans , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Food Microbiology , Carrier State/microbiology , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Salmonella Infections/drug therapy , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics
3.
BMC Res Notes ; 17(1): 129, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725016

ABSTRACT

OBJECTIVES: The study evaluated sub-microscopic malaria infections in pregnancy using two malaria Rapid Diagnostic Tests (mRDTs), microscopy and RT-PCR and characterized Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and Plasmodium falciparum dihydropteroate synthase (Pfdhps) drug resistant markers in positive samples. METHODS: This was a cross sectional survey of 121 pregnant women. Participants were finger pricked, blood drops were collected for rapid diagnosis with P. falciparum histidine-rich protein 11 rapid diagnostic test kit and the ultra-sensitive Alere Pf malaria RDT, Blood smears for microscopy and dried blood spots on Whatman filter paper for molecular analysis were made. Real time PCR targeting the var acidic terminal sequence (varATS) gene of P. falciparum was carried out on a CFX 96 real time system thermocycler (BioRad) in discriminating malaria infections. For each run, laboratory strain of P. falciparum 3D7 and nuclease free water were used as positive and negative controls respectively. Additionally, High resolution melt analyses was employed for genotyping of the different drug resistance markers. RESULTS: Out of one hundred and twenty-one pregnant women sampled, the SD Bioline™ Malaria Ag P.f HRP2-based malaria rapid diagnostic test (mRDT) detected eight (0.06%) cases, the ultra-sensitive Alere™ malaria Ag P.f rapid diagnostic test mRDT had similar outcome in the same samples as detected by the HRP2-based mRDT. Microscopy and RT-PCR confirmed four out of the eight infections detected by both rapid diagnostic tests as true positive and RT-PCR further detected three false negative samples by the two mRDTs providing a sub-microscopic malaria prevalence of 3.3%. Single nucleotide polymorphism in Pfdhps gene associated with sulphadoxine resistance revealed the presence of S613 mutant genotypes in three of the seven positive isolates and isolates with mixed wild/mutant genotype at codon A613S. Furthermore, four mixed genotypes at the A581G codon were also recorded while the other Pfdhps codons (A436G, A437G and K540E) showed the presence of wild type alleles. In the Pfdhfr gene, there were mutations in 28.6%, 28.6%, and 85.7% at the I51, R59 and N108 codons respectively. Mixed wild and mutant type genotypes were also observed in 28.6% each of the N51I, and C59R codons. For the Pfcrt, two haplotypes CVMNK and CVIET were observed. The SVMNT was altogether absent. Triple mutant CVIET 1(14.3%) and triple mutant + wild genotype CVIET + CVMNK 1(14.3%) were observed. The Pfmdr1 haplotypes were single mutants YYND 1(14.3%); NFND 1(14.3%) and double mutants YFND 4(57.1%); YYDD 1(14.3%).


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Polymorphism, Single Nucleotide , Female , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Pregnancy , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Adult , Cross-Sectional Studies , Polymorphism, Single Nucleotide/genetics , Nigeria/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Alleles , Young Adult , Pregnancy Complications, Parasitic/parasitology , Pregnancy Complications, Parasitic/genetics , Pregnancy Complications, Parasitic/diagnosis , Drug Resistance, Multiple/genetics , Dihydropteroate Synthase/genetics , Tetrahydrofolate Dehydrogenase/genetics , Protozoan Proteins/genetics , Adolescent
4.
Medicine (Baltimore) ; 103(19): e38101, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728506

ABSTRACT

To understand the distribution and antimicrobial resistance (AMR) of pathogens in respiratory samples in Changle District People's Hospital in Fujian Province in recent years, and provide empirical guidance for infection control and clinical treatment in the region. A retrospective analysis was conducted on 5137 isolates of pathogens from respiratory samples collected from 2019 to 2022. The AMR patterns were systematically analyzed. For research purposes, the data was accessed on October 12, 2023. A total of 3517 isolates were included in the study, including 811 (23.06%) gram-positive bacteria and 2706 (76.94%) gram-negative bacteria. The top 3 gram-positive bacteria were Staphylococcus aureus with 455 isolates (12.94%), Streptococcus pneumoniae with 99 isolates (2.81%), and Staphylococcus hemolytic with 99 isolates (2.81%). The top 3 gram-negative bacteria were Klebsiella pneumoniae with 815 isolates (23.17%), Pseudomonas aeruginosa with 589 isolates (16.75%), and Acinetobacter baumannii with 328 isolates (9.33%). The proportion of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and K pneumoniae fluctuated between 41.9% and 70.5%, and 18.6% and 20.9%, respectively. The resistance rates of E coli, K pneumoniae, P aeruginosa, and A baumannii to carbapenems were 2.36%, 8.9%, 18.5%, and 19.6%, respectively. The prevalence of methicillin-resistant S aureus (MRSA) was 48.55%, but it decreased to 38.4% by 2022. The resistance rate of Staphylococcus haemolyticus to methicillin was 100%, and 1 case of vancomycin-resistant strain was detected. K pneumoniae, P aeruginosa, A baumannii, and S aureus are the main pathogens in respiratory samples. Although the resistance rates of some multidrug-resistant strains have decreased, ESBL-producing Enterobacteriaceae, carbapenem-resistant bacteria have still increased. Therefore, it is necessary to strengthen the monitoring of pathogen resistance, promote rational use of antibiotics, and promptly report findings.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Respiratory Tract Infections , Humans , Retrospective Studies , China/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/drug therapy , COVID-19/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Microbial Sensitivity Tests , SARS-CoV-2 , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
5.
J Photochem Photobiol B ; 255: 112905, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703452

ABSTRACT

Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.


Subject(s)
Biofilms , Drug Resistance, Bacterial , Photochemotherapy , Photosensitizing Agents , Drug Resistance, Bacterial/drug effects , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Biofilms/drug effects , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Quorum Sensing/drug effects , Humans , Catalase/metabolism , Oxidative Stress/drug effects
6.
Front Microbiol ; 15: 1403168, 2024.
Article in English | MEDLINE | ID: mdl-38741745

ABSTRACT

Overuse of antibiotics is accelerating the antimicrobial resistance among pathogenic microbes which is a growing public health challenge at the global level. Higher resistance causes severe infections, high complications, longer stays at hospitals and even increased mortality rates. Antimicrobial resistance (AMR) has a significant impact on national economies and their health systems, as it affects the productivity of patients or caregivers due to prolonged hospital stays with high economic costs. The main factor of AMR includes improper and excessive use of antimicrobials; lack of access to clean water, sanitation, and hygiene for humans and animals; poor infection prevention and control measures in hospitals; poor access to medicines and vaccines; lack of awareness and knowledge; and irregularities with legislation. AMR represents a global public health problem, for which epidemiological surveillance systems have been established, aiming to promote collaborations directed at the well-being of human and animal health and the balance of the ecosystem. MDR bacteria such as E. coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus spp., Acinetobacter spp., and Klebsiella pneumonia can even cause death. These microorganisms use a variety of antibiotic resistance mechanisms, such as the development of drug-deactivating targets, alterations in antibiotic targets, or a decrease in intracellular antibiotic concentration, to render themselves resistant to numerous antibiotics. In context, the United Nations issued the Sustainable Development Goals (SDGs) in 2015 to serve as a worldwide blueprint for a better, more equal, and more sustainable existence on our planet. The SDGs place antimicrobial resistance (AMR) in the context of global public health and socioeconomic issues; also, the continued growth of AMR may hinder the achievement of numerous SDGs. In this review, we discuss the role of environmental pollution in the rise of AMR, different mechanisms underlying the antibiotic resistance, the threats posed by pathogenic microbes, novel antibiotics, strategies such as One Health to combat AMR, and the impact of resistance on sustainability and sustainable development goals.

7.
Front Med (Lausanne) ; 11: 1281418, 2024.
Article in English | MEDLINE | ID: mdl-38707185

ABSTRACT

Introduction: Improved laboratory diagnostics is needed to support sepsis diagnosis and combat increasing antibiotic resistance in Benin. We trained clinical laboratory experts and technicians to improve their skills in accurate and up-to-date diagnostics. Methods: A Train-the-Trainer (TtT) approach was used to design the course that combines theoretical and practical laboratory skills, specifically addressing the knowledge gaps we had previously identified in our national survey. Pedagogical methods were student-centered, including peer learning, use of online materials, practical laboratory work and pre-and post-course tests. Results: We first trained 10 trainers who in turn trained 40 laboratory technicians from across the country, from both public and private clinical and veterinary laboratories. The trainers also prepared standard operation procedures for blood culture and antibiotic susceptibility testing based on international standards. Three months after the training, follow-up visits were made to the laboratories where the implementation of the new skills was evaluated. The progress of the participants observed during the course and the implementation of the new skills afterwards proved the training to be effective. Discussion: The professional networks created during the training, the empowerment that utilizes local knowledge resources, and the government support for our initiative can be expected to bring sustainability to the initiative and support the participation of Beninese laboratories in international surveillance programs in the future.

8.
Pharmacol Res ; : 107188, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705262

ABSTRACT

Antimicrobial resistance (AMR) poses serious challenges to the healthcare systems worldwide. Multiple factors and activities contribute to the development and spread of antimicrobial-resistant microorganisms. Monitoring progress in combating AMR is fundamental at both global and national levels to drive multisectoral actions, identify priorities, and coordinate strategies. Since 2017, the World Health Organization (WHO) has collected data through the Tracking AMR Country Self-Assessment Survey (TrACSS). TrACSS data are published in a publicly-available database. In 2023, 71 (59.9%) out of 177 responding countries reported the existence of a monitoring and evaluation plan for their National Action Plan (NAP) on AMR, and just 20 countries (11.3%) the allocation of funding to support NAP implementation. Countries reported challenges including limited financial and human resources, lack of technical capacity, and variable political commitment. Even across the Group of Seven (G7) countries, which represent some of the world's most advanced economies, many areas still need improvement, such as full implementation of infection prevention and control measures, adoption of WHO access/watch/reserve (AWaRe) classification of antibiotics, effective integration of laboratories in AMR surveillance in the animal health and food safety sectors, training and education, good manufacturing and hygiene practices in food processing, optimising pesticides use and environmental residues of antimicrobial drugs. Continuous and coordinated efforts are needed to strengthen multisectoral engagement to fight AMR.

9.
Res Sq ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746293

ABSTRACT

Antimicrobial resistant (AMR) pathogens represent urgent threats to human health, and their surveillance is of paramount importance. Metagenomic next generation sequencing (mNGS) has revolutionized such efforts, but remains challenging due to the lack of open-access bioinformatics tools capable of simultaneously analyzing both microbial and AMR gene sequences. To address this need, we developed the CZ ID AMR module, an open-access, cloud-based workflow designed to integrate detection of both microbes and AMR genes in mNGS and whole-genome sequencing (WGS) data. It leverages the Comprehensive Antibiotic Resistance Database and associated Resistance Gene Identifier software, and works synergistically with the CZ ID short-read mNGS module to enable broad detection of both microbes and AMR genes. We highlight diverse applications of the AMR module through analysis of both publicly available and newly generated mNGS and WGS data from four clinical cohort studies and an environmental surveillance project. Through genomic investigations of bacterial sepsis and pneumonia cases, hospital outbreaks, and wastewater surveillance data, we gain a deeper understanding of infectious agents and their resistomes, highlighting the value of integrating microbial identification and AMR profiling for both research and public health. We leverage additional functionalities of the CZ ID mNGS platform to couple resistome profiling with the assessment of phylogenetic relationships between nosocomial pathogens, and further demonstrate the potential to capture the longitudinal dynamics of pathogen and AMR genes in hospital acquired bacterial infections. In sum, the new AMR module advances the capabilities of the open-access CZ ID microbial bioinformatics platform by integrating pathogen detection and AMR profiling from mNGS and WGS data. Its development represents a critical step toward democratizing pathogen genomic analysis and supporting collaborative efforts to combat the growing threat of AMR.

10.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38743467

ABSTRACT

Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Acinetobacter baumannii/virology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Acinetobacter baumannii/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Virulence , Acinetobacter Infections/microbiology , Animals , Moths/microbiology , Moths/virology , Phage Therapy , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Larva/microbiology , Larva/virology
11.
Clin Infect Dis ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743564

ABSTRACT

BACKGROUND: Environmental disinfection is essential for reducing spread of healthcare associated infections (HAIs). Previous studies report conflicting results regarding the effects of ultraviolet light (UV) in reducing infections. This trial evaluated the impact of adding pulsed xenon UV (PX-UV) to standard terminal cleaning in reducing environmentally-implicated HAIs (eiHAIs). METHODS: The LAMP trial was conducted in 2 hospitals (15 inpatient wards) utilizing a cluster randomized controlled, double-blinded, interventional crossover trial comparing standard terminal cleaning followed by either pulsed xenon ultraviolet (PX-UV) disinfection (intervention arm) or sham disinfection (control arm). The primary outcome was incidence of eiHAIs from clinical microbiology tests on the 4th day of stay or later or within 3 days after discharge from the study unit. EiHAIs included clinical cultures positive for vancomycin-resistant enterococci (VRE), extended spectrum beta-lactamase-producing Escherichia coli or Klebsiella pneumonia, methicillin-resistant Staphylococcus aureus (MRSA), and Acinetobacter baumannii, and stool PCR positive for Clostridiodes difficile. FINDINGS: Between May 18, 2017 to Jan 7, 2020, 25,732 patients were included, with an incidence of 601 eiHAI and 180,954 patient days. There was no difference in the rate of eiHAIs in the intervention and sham arms (3.49 vs 3.17 infections/1000 patient days respectively, RR 1.10 CI (0.94, 1.29, p= 0.23)). Study results were similar when stratified by eiHAI type, hospital, and unit type. CONCLUSION: The LAMP study failed to demonstrate an effect of the addition of UV light disinfection following terminal cleaning on reductions in rates of eiHAIs. Further investigations targeting hospital environmental surfaces and the role of no touch technology to reduce HAIs are needed.

12.
PLoS One ; 19(5): e0303353, 2024.
Article in English | MEDLINE | ID: mdl-38743684

ABSTRACT

INTRODUCTION: The study of Klebsiella quasipneumoniae, Klebsiella variicola, and AmpC production in extended-spectrum ß-lactamase (ESBL)-producing Klebsiella in Japan is limited, and existing data are insufficient. This study aims to characterize Klebsiella species, determine AmpC production rates, and analyze antimicrobial resistance patterns in ESBL-producing Klebsiella isolates in Japan. METHODS: A total of 139 clinical isolates of ESBL-producing Klebsiella were collected in Japan, along with their corresponding antimicrobial susceptibility profiles. The isolates were identified using a web-based tool. ESBL genes within the isolates were identified using multiplex PCR. Screening for AmpC-producing isolates was performed using cefoxitin disks, followed by multiplex PCR to detect the presence of AmpC genes. Antimicrobial resistance patterns were analyzed across the predominant ESBL genotypes. RESULTS: The web-based tool identified 135 isolates (97.1%) as Klebsiella pneumoniae and 4 (2.9%) as K. quasipneumoniae subsp. similipneumoniae, with no instances of K. variicola detected. Among K. pneumoniae, the CTX-M-1 group emerged as the predominant genotype (83/135, 61.5%), followed by K. quasipneumoniae subsp. similipneumoniae (3/4, 75.0%). The CTX-M-9 group was the second most prevalent genotype in K. pneumoniae (45/135, 33.3%). The high resistance rates were observed for quinolones (ranging from 46.7% to 63.0%) and trimethoprim/sulfamethoxazole (78.5%). The CTX-M-1 group exhibited higher resistance to ciprofloxacin (66/83, 79.5%) compared to the CTX-M-9 group (18/45, 40.0%), a trend also observed for levofloxacin and trimethoprim/sulfamethoxazole. Among the 16 isolates that tested positive during AmpC screening, only one K. pneumoniae isolates (0.7%) were confirmed to carry the AmpC gene. CONCLUSION: Klebsiella pneumoniae with the CTX-M-1 group is the most common ESBL-producing Klebsiella in Japan and showed a low proportion of AmpC production. These isolates are resistant to quinolones and trimethoprim/sulfamethoxazole, highlighting the challenge of managing this pathogen. The findings underscore the importance of broader research and continuous monitoring to address the resistance patterns of ESBL-producing Klebsiella.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Klebsiella Infections , Klebsiella pneumoniae , Klebsiella , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Klebsiella/genetics , Klebsiella/drug effects , Klebsiella/isolation & purification , Klebsiella/enzymology , Japan , Retrospective Studies , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Male , Female , East Asian People
13.
Infect Drug Resist ; 17: 1731-1739, 2024.
Article in English | MEDLINE | ID: mdl-38715964

ABSTRACT

Objective: To compare the epidemiological characteristics and drug resistance of Burkholderia cepacia isolated from blood cultures, and to provide data support and a scientific basis for the clinical treatment and detection of hospital infections. Methods: The Hebei Province Antimicrobial Surveillance Network received 349 B. cepacia strains isolated from blood cultures reported by 83 hospitals, from 2016 to 2021. These strains were identified by MALDI-TOF MS and, the antibiotic sensitivity tests were carried out using the VITEK 2 COMPACT system. The 2023 Institute of Clinical and Laboratory Standardization drug-susceptibility breakpoints were used for drug susceptibility testing and the data were analyzed using WHONET5.6 software. Results: A total of 349 B. cepacia strains were isolated from 2016 to 2021, including 68 strains from secondary hospitals and 281 strains from tertiary hospitals. The ratios of male: female patients with B. cepacia bloodstream infections in all hospitals, secondary hospitals, and tertiary hospitals were 1.49:1 (209/140), 2.09:1 (46/22), and 1.38:1 (163/118), respectively. Most B. cepacia strains were isolated in intensive care units (ICUs), followed by internal medicine departments, accounting for 49.57% (173/349) and 22.92% (80/349), respectively. Regarding the age distribution, most patients were elderly (>65 years, 57.59%, 201/349), with numbers of patients gradually declining with decreasing of age. The resistance rates for levofloxacin, ceftazidime, and sulfamethoxazole decreased over the 6-year period (P<0.05), while there were no significant changes in the resistance rates for meropenem, chloramphenicol, and minocycline (P>0.05). There was no significant difference in drug-resistance rates between secondary and tertiary hospitals (P>0.05). Conclusion: Attention should be paid to bloodstream infections caused by B. cepacia, especially elderly patients and patients admitted to the ICU. The difficult treatment characteristics of B. cepacia bloodstream infections mean that laboratories and clinicians should pay careful attention to drug resistance to provide a basis for their prevention and empirical treatment.

14.
JAC Antimicrob Resist ; 6(3): dlae068, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38716402

ABSTRACT

Background: Antimicrobial resistance (AMR) is a serious threat to global health systems. Escherichia coli is a major cause of urinary tract infections (UTIs). Understanding the AMR patterns of uropathogenic E. coli (UPEC) is crucial for effective public health interventions worldwide. Objectives: This systematic review and meta-analysis aimed to consolidate existing research and provide a comprehensive information on AMR UPEC in Ethiopia. Methods: We systematically searched databases such as PubMed, Web of Science, and Science Direct, along with including articles from Google Scholar. Data were extracted into Microsoft Excel and analysed using STATA 17.0. Cohen's kappa was computed to assess reviewer agreement, while the I2 statistic evaluated heterogeneity. Egger's tests were conducted to detect publication bias, and random-effects models were utilized to estimate the pooled resistance, with AMR rates for each antibiotic pooled separately. Results: UPEC showed resistance rates, ranging from 3.64% (95% CI: -4.38% to 11.67%) for amikacin to 85.32% (95% CI: 78.6%-92.04%) for ampicillin. Highest resistance was to ampicillin (85.32%), followed by amoxicillin at 82.52% (95% CI: 74.3%-90.74%), tetracycline at 60.67% (95% CI: 51.53%-69.81%) and trimethoprim/sulfamethoxazole at 57.17% (95% CI: 49.93%-64.42%). Conversely, resistance rates were lower for amikacin at 3.64% and meropenem at 5.26% (95% CI: 2.64%-7.88%). UPEC demonstrated a pooled MDR rate of 79.17% (95% CI: 70.32%-88.01%) and a pooled ESBL production rate of 29.16% (95% CI: 22.36%-38.55%). Conclusions: High levels of AMR were observed in UPEC strains, highlighting a critical public health issue requiring urgent action through robust antimicrobial stewardship and surveillance to preserve effective UTI treatment options.

15.
Arch Microbiol ; 206(6): 250, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722362

ABSTRACT

The widespread evolution of phenotypic resistance in clinical isolates over the years, coupled with the COVID-19 pandemic onset, has exacerbated the global challenge of antimicrobial resistance. This study aimed to explore changes in bacterial infection patterns and antimicrobial resistance during the COVID-19 pandemic. This study involved the periods before and during COVID-19: the pre-pandemic and pandemic eras. The surveillance results of bacterial isolates causing infections in cancer patients at an Egyptian tertiary oncology hospital were retrieved. The Vitek®2 or Phoenix systems were utilized for species identification and susceptibility testing. Statistical analyses were performed comparing microbiological trends before and during the pandemic. Out of 2856 bacterial isolates, Gram-negative bacteria (GNB) predominated (69.7%), and Gram-positive bacteria (GPB) comprised 30.3% of isolates. No significant change was found in GNB prevalence during the pandemic (P = 0.159). Elevated rates of Klebsiella and Pseudomonas species were demonstrated during the pandemic, as was a decrease in E. coli and Acinetobacter species (P < 0.001, 0.018, < 0.001, and 0.046, respectively) in hematological patients. In surgical patients, Enterobacteriaceae significantly increased (P = 0.012), while non-fermenters significantly decreased (P = 0.007). GPB species from either hematological or surgical wards exhibited no notable changes during the pandemic. GNB resistance increased in hematological patients to carbapenems, amikacin, and tigecycline and decreased in surgical patients to amikacin and cefoxitin (P < 0.001, 0.010, < 0.001, < 0.001, and 0.016, respectively). The study highlights notable shifts in the microbial landscape during the COVID-19 pandemic, particularly in the prevalence and resistance patterns of GNB in hematological and surgical wards.


Subject(s)
Anti-Bacterial Agents , COVID-19 , Drug Resistance, Bacterial , SARS-CoV-2 , Tertiary Care Centers , Humans , COVID-19/epidemiology , Tertiary Care Centers/statistics & numerical data , Egypt/epidemiology , Anti-Bacterial Agents/pharmacology , SARS-CoV-2/drug effects , Neoplasms , Microbial Sensitivity Tests , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/drug therapy , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Cancer Care Facilities , Pandemics
16.
Environ Int ; 187: 108680, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38723455

ABSTRACT

The global health crisis posed by increasing antimicrobial resistance (AMR) implicitly requires solutions based a One Health approach, yet multisectoral, multidisciplinary research on AMR is rare and huge knowledge gaps exist to guide integrated action. This is partly because a comprehensive survey of past research activity has never performed due to the massive scale and diversity of published information. Here we compiled 254,738 articles on AMR using Artificial Intelligence (AI; i.e., Natural Language Processing, NLP) methods to create a database and information retrieval system for knowledge extraction on research perfomed over the last 20 years. Global maps were created that describe regional, methodological, and sectoral AMR research activities that confirm limited intersectoral research has been performed, which is key to guiding science-informed policy solutions to AMR, especially in low-income countries (LICs). Further, we show greater harmonisation in research methods across sectors and regions is urgently needed. For example, differences in analytical methods used among sectors in AMR research, such as employing culture-based versus genomic methods, results in poor communication between sectors and partially explains why One Health-based solutions are not ensuing. Therefore, our analysis suggest that performing culture-based and genomic AMR analysis in tandem in all sectors is crucial for data integration and holistic One Health solutions. Finally, increased investment in capacity development in LICs should be prioritised as they are places where the AMR burden is often greatest. Our open-access database and AI methodology can be used to further develop, disseminate, and create new tools and practices for AMR knowledge and information sharing.

17.
PLoS Med ; 21(5): e1004386, 2024 May.
Article in English | MEDLINE | ID: mdl-38709718

ABSTRACT

BACKGROUND: Randomized controlled trials found that twice-yearly mass azithromycin administration (MDA) reduces childhood mortality, presumably by reducing infection burden. World Health Organization (WHO) issued conditional guidelines for mass azithromycin administration in high-mortality settings in sub-Saharan Africa given concerns for antibiotic resistance. While prolonged twice-yearly MDA has been shown to increase antibiotic resistance in small randomized controlled trials, the objective of this study was to determine if macrolide and non-macrolide resistance in the gut increases with the duration of azithromycin MDA in a larger setting. METHODS AND FINDINGS: The Macrolide Oraux pour Réduire les Décès avec un Oeil sur la Résistance (MORDOR) study was conducted in Niger from December 2014 to June 2020. It was a cluster-randomized trial of azithromycin (A) versus placebo (P) aimed at evaluating childhood mortality. This is a sub-study in the MORDOR trial to track changes in antibiotic resistance after prolonged azithromycin MDA. A total of 594 communities were eligible. Children 1 to 59 months in 163 randomly chosen communities were eligible to receive treatment and included in resistance monitoring. Participants, staff, and investigators were masked to treatment allocation. At the conclusion of MORDOR Phase I, by design, all communities received an additional year of twice-yearly azithromycin treatments (Phase II). Thus, at the conclusion of Phase II, the treatment history (1 letter per 6-month period) for the participating communities was either (PP-PP-AA) or (AA-AA-AA). In Phase III, participating communities were then re-randomized to receive either another 3 rounds of azithromycin or placebo, thus resulting in 4 treatment histories: Group 1 (AA-AA-AA-AA-A, N = 51), Group 2 (PP-PP-AA-AA-A, N = 40), Group 3 (AA-AA-AA-PP-P, N = 27), and Group 4 (PP-PP-AA-PP-P, N = 32). Rectal swabs from each child (N = 5,340) were obtained 6 months after the last treatment. Each child contributed 1 rectal swab and these were pooled at the community level, processed for DNA-seq, and analyzed for genetic resistance determinants. The primary prespecified outcome was macrolide resistance determinants in the gut. Secondary outcomes were resistance to beta-lactams and other antibiotic classes. Communities recently randomized to azithromycin (groups 1 and 2) had significantly more macrolide resistance determinants than those recently randomized to placebo (groups 3 and 4) (fold change 2.18, 95% CI 1.5 to 3.51, Punadj < 0.001). However, there was no significant increase in macrolide resistance in communities treated 4.5 years (group 1) compared to just the most recent 2.5 years (group 2) (fold change 0.80, 95% CI 0.50 to 1.00, Padj = 0.010), or between communities that had been treated for 3 years in the past (group 3) versus just 1 year in the past (group 4) (fold change 1.00, 95% CI 0.78 to 2.35, Padj = 0.52). We also found no significant differences for beta-lactams or other antibiotic classes. The main limitations of our study were the absence of phenotypic characterization of resistance, no complete placebo arm, and no monitoring outside of Niger limiting generalizability. CONCLUSIONS: In this study, we observed that mass azithromycin distribution for childhood mortality among preschool children in Niger increased macrolide resistance determinants in the gut but that resistance may plateau after 2 to 3 years of treatment. Co-selection to other classes needs to be monitored. TRIAL REGISTRATION: NCT02047981 https://classic.clinicaltrials.gov/ct2/show/NCT02047981.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Drug Resistance, Bacterial , Macrolides , Mass Drug Administration , Humans , Azithromycin/therapeutic use , Niger , Child, Preschool , Anti-Bacterial Agents/therapeutic use , Infant , Female , Male , Macrolides/therapeutic use , Child Mortality
18.
Article in English | MEDLINE | ID: mdl-38702905

ABSTRACT

AIMS: Our aim is to characterize through whole-genome sequencing (WGS) the antimicrobial resistance (AMR) and heavy metal tolerance (HMT) genes content, plasmid presence, virulence potential and genomic diversity of the rare non-typhoid Salmonella enterica serovar Orion (S. Orion) from 19 countries of the African, American, Eastern Mediterranean, European, Southeastern Asia and Western Pacific regions. METHODS AND RESULTS: Totally 324 S. Orion genomes were screened for AMR, HMT and virulence genes, plasmids and Salmonella Pathogenicity Islands (SPIs). Genomic diversity was investigated using Multi-Locus Sequence Typing (MLST) and core-genome MLST (cgMLST). Efflux pump encoding genes mdsA and mdsB were present in all genomes analysed, while quinolone chromosomal point mutations and aminoglycoside, beta-lactam, colistin, lincosamide, macrolide, phenicol, sulphonamide, trimethoprim, tetracycline and disinfectant resistance genes were found in 0.3%-5.9%. A total of 17 genomes (5.2%) from Canada, the United Kingdom, the USA and Tanzania showed a potential multi-drug resistance profile. Gold tolerance genes golS and golT were detected in all genomes analysed, while arsenic, copper, mercury, silver and tellurium tolerance genes were found in 0.3%-35.5%. Col(MGD2) was the most frequently detected plasmid, in 15.4% of the genomes. Virulence genes related to adherence, macrophage induction, magnesium uptake, regulation, serum resistance, stress adaptation, type III secretion systems and six SPIs (1, 2, 3, 4, 5, 9, 12, 13, 14 and C63PI) were detected. ST639 was assigned to 89.2% of the S. Orion genomes, while cgMLST showed core-genome STs and clusters of strains specific by countries. CONCLUSION: The high virulence factor frequencies, the genomic similarity among some non-clinical and clinical strains circulating worldwide and the presence of a strain carrying a resistance gene against a last resource antimicrobial like colistin, highlight the potential risk of S. Orion strains for public health and food safety and reinforce the importance to not underestimate the potential hazard of rare non-typhoid Salmonella serovars.

19.
Heliyon ; 10(9): e30464, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711646

ABSTRACT

The occurrence of healthcare-associated infections is a multifactorial phenomenon related to hospital space contamination by bacteria. The ESKAPE group, specifically Pseudomonas aeruginosa and Klebsiella pneumoniae, play a relevant role in the occurrence of these infections. Therefore, comprehensive research is needed to identify characteristics that justify the prevalence of these species in the healthcare environment. In this line, the study aimed to determine the antimicrobial resistance, biofilm formation, and the potential for polymer degradation in a collection of 33 P. aeruginosa strains and 2 K. pneumoniae strains sampled from various equipment and non-critical surfaces in a Portuguese hospital. Antimicrobial susceptibility tests revealed that none of the strains was categorized as multidrug-resistant (non-MDR). An assessment of their biofilm-forming capabilities indicated that 97 % of the strains exhibited biofilm-producing characteristics. Notably, within this group, the majority of P. aeruginosa and half of K. pneumoniae strains were classified as strong biofilm producers. Furthermore, the strains were evaluated for their potential to cause damage or change medical devices, namely infusion sets, nasal cannula, and urinary catheters. Three P. aeruginosa strains, two strong and one moderate biofilm producers, showed the highest ability to modify surfaces of the nasal cannula and infusion sets. Additionally, the Chi-square test revealed a statistically significant relationship between the presence of P. aeruginosa strains and the water accession spots. In conclusion, this work suggests that bacteria from this group hold a significant ability to grow in the healthcare environment through the degradation of non-critical materials. This suggests a potential concern for the persistence and proliferation of these organisms in hospital environments, emphasizing the importance of robust infection control measures to mitigate the risks associated with bacterial growth on such surfaces.

20.
Ann Clin Microbiol Antimicrob ; 23(1): 41, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704577

ABSTRACT

BACKGROUND: Infections caused by linezolid-resistant enterococci (LRE) are clinically difficult to treat and threaten patient health. However, there is a lack of studies on long time-span LRE strains in China. For this reason, our study comprehensively revealed the resistance mechanisms of LRE strains collected in a Chinese tertiary care hospital from 2011 to 2022. METHODS: Enterococcal strains were screened and verified after retrospective analysis of microbial data. Subsequently, 65 LRE strains (61 Enterococcus faecalis and 4 Enterococcus faecium, MIC ≥ 8 µg/ml), 1 linezolid-intermediate Enterococcus faecium (MIC = 4 µg/ml) and 1 linezolid-susceptible Enterococcus faecium (MIC = 1.5 µg/ml) were submitted for whole-genome sequencing (WGS) analysis and bioinformatics analysis. RESULTS: The optrA gene was found to be the most common linezolid resistance mechanism in our study. We identified the wild-type OptrA and various OptrA variants in 98.5% of LRE strains (61 Enterococcus faecalis and 3 Enterococcus faecium). We also found one linezolid-resistant Enterococcus faecium strain carried both optrA and cfr(D) gene, while one linezolid-resistant Enterococcus faecium only harbored the poxtA gene. Most optrA genes (55/64) were located on plasmids, with impB-fexA-optrA, impB-fexA-optrA-erm(A), fexA-optrA-erm(A), and fexA-optrA segments. A minority of optrA genes (9/64) were found on chromosomes with the Tn6674-like platform. Besides, other possible linezolid resistance-associated mechanisms (mutations in the rplC and rplD genes) were also found in 26 enterococcal strains. CONCLUSIONS: Our study suggested that multiple mechanisms of linezolid resistance exist among clinical LRE strains in China.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Whole Genome Sequencing , Linezolid/pharmacology , China/epidemiology , Humans , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Drug Resistance, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/genetics , Anti-Bacterial Agents/pharmacology , Retrospective Studies , Enterococcus/drug effects , Enterococcus/genetics , Bacterial Proteins/genetics , Genome, Bacterial , Molecular Epidemiology , Tertiary Care Centers , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...